Неверный результат для наилучшего соответствия плоскости множеству точек с scipy.linalg.lstsq?

78
7

У меня есть набор точек (x, y, z) для которых мне нужно найти плоскость, которая наилучшим образом подходит для них. Плоскость определяется его коэффициентами как:

a*x + b*y + c*z + d = 0

или эквивалентно:

A*X +B*y + C = z

Второе уравнение - это просто повторная запись первого.

Я использую метод, разработанный в этом стиле, который является переводом на Python из кода Matlab, приведенного в этом ответе. Метод находит коэффициенты для определения плоского уравнения, которое наилучшим образом соответствует множеству точек.

Проблема в том, что я могу придумать набор коэффициентов, который лучше подходит для этого набора точек.

Чтобы определить "лучше", я вычисляю сумму абсолютных расстояний каждой точки к данной плоскости, следуя приведенной здесь математике. Меньшее значение означает "лучше", так как точки в среднем ближе к плоскости.

MWE ниже. Как можно видеть, полученные вручную коэффициенты приводят к меньшей сумме абсолютных значений расстояния (~155.89), чем к "лучшим" коэффициентам, найденным описанным выше способом (~158.78).

Что мне здесь не хватает?

MWE

import numpy as np
import scipy.linalg

def sum_dist_2_plane(x, y, z, a, b, c, d):
"""
Sum of the absolute values of the distances to a plane, given by the
a,b,c,d coefficients, for the set of points defined by x,y,z.
"""
return np.sum(abs(a*x + b*y + c*z + d)/np.sqrt(a**2+b**2+c**2), axis=0)

# Some xyz points.
xyz = np.array([[1.1724546888698482, 0.67037911349217505, 1.6014525241637045], [2.0029440384631063, 1.2163076402918147, -1.1082409593302032], [-0.87863180025363918, 1.261853987259635, 1.1598532675831237], [0.42789396045777467, 0.67325845732274703, 1.1421266649135475], [1.366142552248496, 1.0959456367043121, -1.6046393305927751], [-2.1595534005011485, -2.2582441035518794, -1.0663372184011806], [2.1104543583371633, -2.3711560770628917, 0.33077589412150843], [1.1974640975387107, 1.2100068141421523, 0.71395322259985505], [0.44492797840962123, 0.51098686422493145, 0.23383900276620295], [-2.0810094204638281, -2.11327958929372, -1.0758230448163033], [1.1655230345226737, 2.3777304002844968, -1.5663228128649394], [0.90952208156596781, 0.84978064084217519, 1.5986081506274985], [1.2951624720758836, 1.2231899029278033, 1.6154291293114866], [0.97545563477882025, 1.1844143994262264, 0.25292733170194026], [2.0281659385206012, 1.3370146330231019, 1.1961575550766028], [-1.9843445684092424, -0.012247402159192651, -2.0732736152121092], [1.0852175044560746, 1.8083916604163963, 0.27402181385868829], [-0.97983337631837208, 1.1032503818628847, 1.1579341604311182], [2.5033961310304029, 1.5628354191569325, -0.60785250636200061], [0.84123393662217383, 1.6169587554844618, -0.66116704633280676], [-1.8572657771039134, 0.043103553120073364, -2.0779545355975415], [2.6979128603518787, 1.70987170366249, -0.59306759275995091], [1.898614831265683, -2.9411794973775129, 1.7095862940118209], [0.81052668401212824, 0.89107411631439926, 1.597589407046101], [-2.0466083174114331, 0.14841369250699468, -1.120794708199135], [2.7004384737959648, 1.3616954868011328, 1.2294957766312749], [2.5373220833750385, 1.7067484497548233, 0.32345763726774379], [0.42025310188487158, 0.25762913945011717, -2.5899822318304473], [1.0425582222020597, 1.2902156453507225, 1.1638276333984123], [1.8492329386150801, 1.369745208770941, -1.1101559957041474], [-1.9685282554587256, -0.053725287173628226, 0.26827797508054374], [2.1798881190450285, 1.2454661605758286, -1.5732113885771071], [2.097212096433736, -2.9271738140601462, -0.56568133063870363], [-4.0108387171254396, -0.95559594599890008, 1.7588521192455815], [1.1558287640906737, 0.84330421357278096, 1.1565989504480143], [-2.9571643443632118, -2.847346163285049, 1.3087401683271338], [1.8592900784537116, 1.3952561066549967, 0.28365423946831214], [-3.4841441062982867, -3.0501496018162109, -0.48161393173162992], [2.5524429115550777, 0.62723764313314334, 0.29882336571990464], [2.2267279436912251, -3.8561674586606758, 1.3393813829669483], [2.1214758016437449, -0.20203416631090113, -1.5903243997743601], [0.14882165322179747, 0.4127883227210779, 0.23115527212661391], [1.2042041122995621, 1.2013226392201846, -0.2014020012510187], [-0.91807770884292583, 1.1176994160488214, -2.5723612427329385], [1.910565457302241, 1.1857852625952567, -1.5853233609652335], [1.0660312416826301, 1.3594393638452948, 0.71483235729161265], [0.65109075860726373, 0.58395151990229632, 1.590486638605114], [2.0967121651174518, 3.5121496638531586, 0.85481080660772335], [1.1484000297535542, 0.93256813649663772, 0.25125672956252743], [-1.7670514601312102, 0.17479726844255272, 0.26097336908379276], [-0.38814151285133675, -1.36837872393391, -2.0916940966530149], [1.5825758742579219, -0.34854211056693962, 0.2556641250097158], [2.586881293405797, -4.371974479474976, -2.3458559556297445], [0.22496107684878977, 0.26917053206799602, -0.69280100767942088], [-0.92198332953292639, 5.3103622894708327, 1.4344469946544294], [1.5669967464035819, -0.13527817891479368, 1.6081806927677107], [-0.56872000311273319, -1.9823395333139691, -2.5517609300755879], [-3.7708737466313824, -3.2863308845331081, 1.3928734104180975], [0.26086111146896701, 0.91063726352187491, -2.1025221562973897], [4.3490818342473947, 1.7969605233982313, -0.94470942930075807], [0.8202509554992351, 1.6178074457637883, -0.66148472916848533], [-1.5947972211483237, 0.18933818654144918, -0.20453683465790107], [0.9736103155058905, 1.4905334895713331, -2.0806647444063202], [1.2838541958241105, 2.0842224244281931, -0.17045822168000058], [3.7985716232291624, 2.5292902540646183, -0.022070946178700979], [1.175697191763003, 0.70063646974704663, 0.24808027552254686], [1.7834118390535998, 1.2937296781793448, -0.1818232448888395], [1.1281441478154344, 0.89641394438231292, 1.6040641573676311], [-2.0118889302553362, 2.7916846393274373, -0.57683324778643197], [-0.5995803308341846, -2.2434949940054554, 0.2835440401850704], [0.32077033536702831, -0.95844872063257081, -1.6245015133016167], [0.81357199339193753, 1.5540883407880133, -0.19956720143058249], [0.62611590692268004, 2.5129849486626958, -0.62767513959140331], [1.3018663649626585, 0.92514176013041427, 0.71042211390030729], [-0.72715254964437737, -2.3705643250823436, -0.63320562968051775], [1.9172742234794142, -2.8680592171367834, -1.9965843559235594], [-0.7108415762295921, -2.2783943434144658, -0.63767826146936812], [1.968546542650037, -2.8305910089272146, -0.11154135958968681], [-3.1492524087194655, -2.8503098024243823, -0.049957063615551078], [-4.0600431110777313, -0.97891479243488955, -0.055962425569617835], [-3.3752702254780629, 5.7587998072406652, 2.0459797674238658], [-1.9855135921592455, 2.7466682542750638, -0.58034791274582886], [2.033073141968945, 1.5208650449610079, -0.16592183863411947], [-1.0379089220195949, -4.7336396164389383, 0.0045652508195388464], [0.059579198580756186, 0.50654688886459498, -0.69144595015375643], [2.1785293390435458, -2.67576518666927, -2.4787451249989232], [2.1096278381494935, -0.41668256763302775, -2.5482230530414327], [2.898772426390924, 1.9762337520130302, 1.2619960149795091], [0.95620776766155502, 1.4639884373148864, -0.19976180368861662], [0.78751831482788348, 1.6888070662998231, -1.1280318812973462], [0.75574071441925506, -0.89893698883953688, -0.21651308186821439], [-0.26825101547751962, -3.4496728096007274, 1.7066486428460195], [1.6690385240329706, -0.49893224975237227, -0.66401176702524367], [-0.28877792353045606, 1.5139628395303639, 0.25314013342428154], [0.33435105972001761, 0.72567663189581422, -2.5862147225048417], [-0.29757422904759573, 1.5866751937867298, -0.6682501010682671], [2.7581055173587461, -3.973585217996157, 0.0036824743223959899], [-3.4344275379769509, -3.089933175898083, 0.44457796620464052], [-2.9394415977285413, -2.6122275577950083, 1.2944549102942418], [2.0038460695984823, 1.515512638618338, -1.5731231727332897], [2.206216953170296, 1.4688891052013793, -1.5661966567970254], [-1.035208468220836, 4.4666436487176657, 0.89858770640569929], [-2.0039938640838546, 0.24894412179006209, -1.1220951191237916], [-3.9104727661324539, -0.70689702779279451, 1.2978242803460915], [1.7290487193475563, 1.2850859351795931, -0.18395259620439219], [1.1198244545179541, 1.7335817969585154, -0.18776435816536718], [0.32239533364835676, 0.2896168073626299, -1.1602117002106667], [0.36649393980823192, 0.28244286109766281, -0.69190114531475189], [0.71629324271161154, 0.62574841994964003, 1.1448784055936088], [-0.65109499789331204, -1.3933343864454197, -2.0884024350786063], [0.97046822380567643, 1.5321191441287463, -0.19744980702830617], [-0.9585141324426697, 1.3494884330155692, 1.610936445675776], [0.9615111008482673, 2.4535668843530907, -1.0939899554364985], [-1.0667872216702354, 0.9585914740866075, 1.6038639420443772], [1.8021244106955299, 1.1320598433704154, 1.1820726259869971], [-0.060098920604716666, 0.46839599864404674, 2.0277692055269654], [0.1721690681247055, 0.33837718694053642, 1.137078044079125], [-1.5964760388322969, 0.29775223476696611, 1.1626558382504655], [2.233093222044507, -2.8349614127699461, 0.36052101139762271], [1.9257633093026034, -2.5325763598899247, -1.5360887301240496], [1.116293873468281, 0.82698434754975214, -2.5739062165349651], [1.1781306304855363, 0.67917370389645249, 1.6017135739225736], [-1.8600651472693519, 0.078727875114422086, 1.6184578422253679], [-1.43994317003447, 0.13431327308359137, 2.0472930703748276], [0.84521838040660946, 0.63970047924770745, -2.100345751420285], [1.7661749989776647, -0.37651847162651875, -2.0797840873592222], [0.83547092354865804, 1.7219104152802622, 0.2661115369175846], [1.8300570222025725, -0.28592323411250137, 1.6180934388285593], [-0.62076647836845089, -0.99191053757063119, -1.1486388713745725], [-1.6239006006253158, 0.41366361326031414, 0.2574990624750626], [0.89195815704237569, 2.2004172385784, -0.17400231396826626], [0.36791088305589931, 0.36096348396301231, -2.5897662606427687], [0.073648763901347059, 0.19675260582587464, -2.1107265203482299], [2.161140531872539, -2.842373820387067, 0.35775402140617274], [-2.0416416353442859, -4.4051625504298446, 0.0054589213454931951], [-2.0525396585901774, 3.6758248479033888, -2.4231570023949089], [-0.96441167578601306, -4.6667609706070516, -0.0032107139968431397], [-1.8689820843196163, 0.021432805852950151, 0.26440433366338567], [-0.15613351765730205, -1.0964152703770347, 1.5952653951331826], [-0.91084152695600051, 1.2388514346844914, 1.1598544561959656], [0.94699177145572266, 1.2276340276860185, 2.0505581774713733], [-0.8929399989505632, 1.2806485400811793, -0.20595242802870217], [1.2023125342023806, 2.3477287603163717, -1.5668539565738087], [1.1651535046949058, 1.3836371788871575, 0.26217241277176129], [-1.0929407572158512, 1.3887078738113698, -0.19910861560325088], [-0.76452840903206265, 1.4237410113821392, -1.6090659495628117], [-1.5594385646555604, 0.1455415355638911, 1.1607640518832483], [-0.59734981961340872, -1.2800366176149909, 1.6032259368271653], [1.2325774703556955, 0.80804053623212702, 0.25109224401040819], [1.177240124012167, 0.90163100927998241, -1.1405108476689563]])
x, y, z = xyz[:, 0], xyz[:, 1], xyz[:, 2]

# Best-fit linear plane, for the Eq: z = a*x + b*y + c.
# See: https://gist.github.com/amroamroamro/1db8d69b4b65e8bc66a6
A = np.c_[x, y, np.ones(xyz.shape[0])]
C, _, _, _ = scipy.linalg.lstsq(A, z)

# Coefficients in the form: a*x + b*y + c*z + d = 0.
a, b, c, d = C[0], C[1], -1., C[2]

# Sum of absolute distances of each point to this plane.
print sum_dist_2_plane(x, y, z, a, b, c, d)

# Hand-picked coefficients.
a, b, c, d = 0.28, -0.14, 0.95, 0.

# Sum of absolute distances of each point to this plane.
print sum_dist_2_plane(x, y, z, a, b, c, d)

спросил(а) 2021-01-19T15:50:46+03:00 6 месяцев, 2 недели назад
1
Решение
126

Формула для плоскости может быть записана как

z_plane = a*x + b*y + d

Вертикальное z-расстояние от точки до плоскости определяется как

|z_plane - z| = |a*x + b*y + d - z|

scipy.linalg.lstsq минимизирует квадрат суммы этих расстояний.

def zerror(x, y, z, a, b, d):
return (((a*x + b*y + d) - z)**2).sum()

Действительно, параметры, возвращаемые scipy.linalg.lstsq дают меньший ноль ошибок, чем выбранные значения:

In [113]: zerror(x, y, z, C[0], C[1], C[2])
Out[113]: 245.03516402045813

In [114]: zerror(x, y, z, 0.28, -0.14, 0.)
Out[114]: 323.81785779708787

Формула

enter image description here

дает перпендикулярное расстояние между точкой (x_0, y_0, z_0) и плоскостью ax + by + cz + d = 0.

Вы могли бы свести к минимуму расстояние по перпендикуляру к плоскости, используя scipy.optimize.minimize (см minimize_perp_distance ниже).

import math
import numpy as np
import scipy.optimize as optimize
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as axes3d
np.random.seed(2016)

mean = np.array([0.0,0.0,0.0])
cov = np.array([[1.0,-0.5,0.8], [-0.5,1.1,0.0], [0.8,0.0,1.0]])
xyz = np.random.multivariate_normal(mean, cov, 50)
x, y, z = xyz[:, 0], xyz[:, 1], xyz[:, 2]

def minimize_z_error(x, y, z):
# Best-fit linear plane, for the Eq: z = a*x + b*y + c.
# See: https://gist.github.com/amroamroamro/1db8d69b4b65e8bc66a6
A = np.c_[x, y, np.ones(x.shape)]
C, resid, rank, singular_values = np.linalg.lstsq(A, z)

# Coefficients in the form: a*x + b*y + c*z + d = 0.
return C[0], C[1], -1., C[2]

def minimize_perp_distance(x, y, z):
def model(params, xyz):
a, b, c, d = params
x, y, z = xyz
length_squared = a**2 + b**2 + c**2
return ((a * x + b * y + c * z + d) ** 2 / length_squared).sum()

def unit_length(params):
a, b, c, d = params
return a**2 + b**2 + c**2 - 1

# constrain the vector perpendicular to the plane be of unit length
cons = ({'type':'eq', 'fun': unit_length})
sol = optimize.minimize(model, initial_guess, args=[x, y, z], constraints=cons)
return tuple(sol.x)

initial_guess = 0.28, -0.14, 0.95, 0.
vert_params = minimize_z_error(x, y, z)
perp_params = minimize_perp_distance(x, y, z)

def z_error(x, y, z, a, b, d):
return math.sqrt((((a*x + b*y + d) - z)**2).sum())

def perp_error(x, y, z, a, b, c, d):
length_squared = a**2 + b**2 + c**2
return ((a * x + b * y + c * z + d) ** 2 / length_squared).sum()

def report(kind, params):
a, b, c, d = params
paramstr = ','.join(['{:.2f}'.format(p) for p in params])
print('{:7}: params: ({}), z_error: {:>5.2f}, perp_error: {:>5.2f}'.format(
kind, paramstr, z_error(x, y, z, a, b, d), perp_error(x, y, z, a, b, c, d)))

report('vert', vert_params)
report('perp', perp_params)
report('guess', initial_guess)

X, Y = np.meshgrid(np.arange(-3.0, 3.0, 0.5), np.arange(-3.0, 3.0, 0.5))
fig = plt.figure()
ax = fig.gca(projection='3d')

def Z(X, Y, params):
a, b, c, d = params
return -(a*X + b*Y + d)/c

ax.plot_surface(X, Y, Z(X, Y, initial_guess), rstride=1, cstride=1, alpha=0.3, color='magenta')
ax.plot_surface(X, Y, Z(X, Y, vert_params), rstride=1, cstride=1, alpha=0.3, color='yellow')
ax.plot_surface(X, Y, Z(X, Y, perp_params), rstride=1, cstride=1, alpha=0.3, color='green')
ax.scatter(x, y, z, c='r', s=50)
plt.xlabel('X')
plt.ylabel('Y')
ax.set_zlabel('Z')
ax.axis('equal')
ax.axis('tight')
plt.show()

Приведенный выше код вычисляет параметры, которые минимизируют вертикальное расстояние от плоскости и перпендикулярное расстояние от плоскости. Затем мы можем вычислить общую ошибку:

vert   : params: (0.94,0.52,-1.00,0.10), z_error:  2.63, perp_error:  3.21
perp : params: (-0.68,-0.39,0.63,-0.06), z_error: 9.50, perp_error: 2.96
guess : params: (0.28,-0.14,0.95,0.00), z_error: 5.22, perp_error: 52.31

Обратите внимание, что vert_params минимизирует z_error, но perp_params минимизирует perp_error.

enter image description here

Пурпурная плоскость соответствует initial_guess, желтая плоскость соответствует vert_params а зеленая плоскость соответствует perp_params.

ответил(а) 2021-01-19T15:50:46+03:00 6 месяцев, 2 недели назад
Ваш ответ
Введите минимум 50 символов
Чтобы , пожалуйста,
Выберите тему жалобы:

Другая проблема